среда, 14 мая 2014 г.

Лунный энергоимпорт


«Техника-молодежи» 1999 №9, обл, с.12-14
http://epizodsspace.no-ip.org/bibl/tm/1999/9/energoimport.html
http://epizodsspace.no-ip.org/
почти все про луну

Энергоимпорт

Юрий Еськов

Прогресс человечества обоснованно связывается с ростом выработки энергии на душу населения. Эта же величина определяет и уровень жизни, и всевозможные, порой весьма успешные, мероприятия по энергосбережению принципиально этого не меняют. Да вот беда — уже нынешний уровень энергопроизводства фатален для экологии Земли, а ведь 5/6 населения нашей планеты испытывают острейший энергетический дефицит! Сокращение же численности человечества самоубийственно, но об этом как-нибудь в другой раз, сейчас речь об энергетике.
Тема эта для нас постоянная. Так, в № 6 за этот год мы рассказали о легко — по мнению автора — реализуемом проекте термоядерной электростанции. Однако это тоже не выход — греться все равно будет земная атмосфера, что нежелательно. Может быть, решение — идея, в разработке которой принимал участие сотрудник Исследовательского центра им.М.В.Келдыша (в недавнем прошлом — НИИ тепловых процессов).
О

создании космических электростанций (КЭС) и передаче производимой ими энергии на Землю заговорили в начале 70-х гг, когда мировой нефтяной кризис заставил искать альтернативные энергоисточники. Скоро стало ясно, что экономически эффективные, тем более конкурентоспособные, КЭС должны иметь чудовищную мощность, а значит, и размеры. Но создание конструкций массой в десятки тысяч тонн, размерами в десятки километров на геостационарной орбите представляет очевидные трудности, путей преодоления которых на существующей, либо создаваемой в обозримом будущем технической базе не видно.
Исследовались возможности доставки требуемых материалов с Луны, но зачем, собственно? На Луне прекрасно можно построить электростанции, солнечные например, а на Землю передавать только энергию, в виде микроволнового луча.
Первый (американский, 1990 г) проект лунной системы энергоснабжения Земли по микроволновому лучу предусматривал исключительно высокий уровень электрической мощности — 20 тераватт (20 млрд кВт), естественно, требовал громадных капитальных затрат, и был встречен энергетиками весьма прохладно.
Последующие, более приземленные проработки, проведенные в ИЦ им. Келдыша и в Отделении физико-технических проблем энергетики РАН в рамках научно-иследовательской работы под общим шифром «Лампа», показали, однако, что даже при значительно меньшей мощности системы (примерно 2,7 млрд кВт), она уже будет давать ощутимый вклад в энергоснабжение Земли в первой половине XXI в. и сможет продемонстрировать свои преимущества как ресурсосберегающая и экологически чистая технология. За 30 лет эксплуатации она позволит сберечь до 200 млрд т углеводородного топлива и сократить более чем на 600 млрд т выбросы в атмосферу углекислого газа.
Однако даже создание такой лунной энергостанции (ЛЭС), изготавливаемой на Луне, потребует больших грузопотоков на околоземную орбиту (до 5-6 тыс. т в год), и то — при создании принципиально новой транспортной системы, где все двигатели используют лунное топливо. В ее состав должны входить лунные грузовые и пилотируемые ракеты, а также межорбитальные корабли для быстрой транспортировки персонала с околоземной на окололунную орбиты с двигателями большой тяги, использующие кислородно-аллюминиевое или кислородно-кремниевое топливо. Грузовые перевозки между орбитами осуществляются с помощью электроракетных двигателей (ЭРД) малой тяги с энергоустановками большой мощности. В качестве последних предполагались либо солнечные энергоустановки (модульные СЭУ с газотурбинным замкнутым циклом при мощности модуля 750 кВт), а также легкие солнечные батареи (СБ) пленочного типа (например, на подложке из железа, мощностью до 10 МВт), либо еще более мощные ядерные установки (до 50 МВт). Однако сегодня все эти двигатели и энергоустановки находятся на начальной стадии разработки.
Для более быстрого начала работ по ЛЭС желательно дальнейшее сокращение уровня ее мощности, что снизит грузопотоки на околоземную орбиту.
Предполагается, что мини-ЛЭС будет развернута уже после создания пионерной лунной базы с персоналом 6-8 человек, при этом не потребует орбитальной инфраструктуры на окололунной орбите. Грузовые и пилотируемые лунные ракеты должны быть одноступенчатыми многоразовыми аппаратами на трассе «околоземная орбита — поверхность Луны — околоземная орбита». Это удовлетворяет новым, более жестким, требованиям по незасорению космического пространства, включая поверхность Луны.
Монтаж лунной энергостанции. Цифрами обозначены: 1 — луноход; 2 — солнечная энергоустановка; 3 — излучающее полотно; 4 — рулон; 5 ~ стойка.

Поскольку на лунной базе уже будет освоено производство из лунного сырья материалов для агрегатов лунного энергоизлучательного комплекса (ЭИК) — железа, кремния и алюминия, получаемый в больших количествах избыточный попутный кислород может использоваться в качестве окислителя для заправки транспортного космического аппарата (ТКА) в обратный рейс. На околоземной орбите ТКА заправляется метаном в оба конца, а кислородом только на прямой рейс. После посадки и разгрузки он заправляется кислородом, достаточным для старта с Луны и возвращения пустого ТКА на околоземную орбиту. Таким образом, попутно решается проблема создания одноступенчатого космического аппарата для кольцевого рейса с весьма большим запасом скорости (до 12 км/с).
Уровень мощности мини-ЛЭС, определяющий массу ее энергоизлучательного комплекса и, следовательно, требуемого производственного оборудования, должен быть минимальным. Однако имеются ограничения снизу, не позволяющие принять мощность, например, 5 МВт, как на первой АЭС в Обнинске. При умеренных размерах передающей системы, близких к габаритам СБ такой мощности, диаметр приемного устройства на Земле превысил бы 100 км (что явно нереально).
Первые ЛЭС даже при больших — по масштабам наземных электростанций — мощностях будут заведомо убыточными, по крайней мере, — до мощностей в несколько десятков миллионов кВт, и неконкурентоспособны. Поэтому принята ЛЭС с диаметром ЭИК 10 км, где масса еще приемлема (16 тыс. т), а мощность уже достаточно велика (600 МВт за 28-суточный цикл).
Основной целью мини-ЛЭС является отработка энергопередачи на столь большие дальности (400 тыс. км) и главное — демонстрация практической реализуемости этой системы, безопасности ее эксплуатации и экологической чистоты. Это крайне важно для убеждения обывателя, госчиновников и коммерческих структур (потенциальных инвесторов).
ЛЭС состоит из передающего энергоизлучательного одноканального комплекса, расположен иного на обращенной к Земле стороне Луны, пассивного плоского ретранслятора на геостационарной орбите и приемной выпрямительной антенны на Земле (ректенны). Все эти элементы круглой формы в плане и имеют диаметр, соответственно, 10, 1 и 10 км. Энергоизлучательный комплекс производит выработку электроэнергии на СБ, преобразование ее в СВЧ-излучение. формирование острого луча на передающей антенне, выполненной в виде фазированной антенной решетки (ФАР), и наведение на отражатель, направляющий его на ректенну. В ректенне осуществляется преобразование микроволнового излучения в постоянный ток, выдаваемый потребителю.
Длина волны 5,7 см, что разрешено Международным советом по электросвязи для использования в промышленности. Электронная система управления лучом обеспечивает его безынерционное наведение на отражатель или на ректенну.
Дистанционная передача энергии СВЧ-лучом является высокоэффективной в энергетическом отношении. Луч от ФАР непосредственно к ректенне идет практически без потерь (тн. КПД передачи в свободном пространстве составляет 99,99998%). Отражатель же перехватывает лишь часть энергии (около 13%), однако общий КПД в течение земных суток все еще высок (42%, не считая потерь на преобразование).
При электрической мощности всех СБ 10,5 млн кВт в лунный полдень и, соответственно, 5,2 млн кВт на выходе из ФАР, средняя мощность на выходе из ректенны за 14-суточный лунный день составит 1,3 млн кВт, что уже приемлемо для промышленного использования в энергоемких производствах, например, при электролизе для получения водорода или алюминия. За 28-суточный лунный цикл «день-ночь» средняя мощность составит 0,65 млн кВт
Уровень воздействия на ионосферу над ректенной в несколько раз ниже допустимого по условиям электрического пробоя. Вне охранной зоны он не превышает разрешенной для населения дозы микроволнового облучения (что гарантирует экологическую чистоту и безопасность).
Особое значение для снижения общей массы энергоизлучательного комплекса и потребных грузопотоков оборудования, а также простоты монтажа при отсутствии на Луне необходимой инфраструктуры имеет выбор схемы и конструкции СБ и ФАР. В ИЦ им.Келдыша и Московском радиотехническом институте РАН в ходе работ по «Лампе» предложена схема «излучающего полотна», в которой электрогенерирующие элементы СБ и ФАР выполнены в виде единой интегральной конструкции.
ФАР формирует узкий луч с расходимостью 10 мм на километр, обеспечивая боковое отклонение (сканирование) в пределах ± 20°. Типична ее пространственная структура с четвертьволновыми вибраторами. Основной недостаток такой излучающей системы — нетехнологичность из-за наличия громадного количества (десятки миллиардов) пространственных элементов высотой до 12 мм. Ее изготовление и монтаж на поверхности Луны при диаметре примерно 10 км, что в условиях малой численности персонала (порядка 20 чел.) даже при наличии автоматов почти наверняка нереальны.
Главное предложенное авторами технологическое упрощение комбинированной системы — «уплощение» системы «СБ+ФАР» путем уменьшения зазора между поверхностью СБ и диполем почти на 2 порядка за счет заполнения его веществом с высокой диэлектрической постоянной (порядка 100). Это сохранит радиотехнические свойства излучателя почти такими же, как и в исходной пространственной ФАР.
Несущая частота генерируется электровакуумными СВЧ-генераторами (клистронами или магнетронами) и разводится по волноводам, а управляющие фазой единичного излучателя сигналы — по полосковым линиям или световодам от лазера. Электропитание транзистора осуществляется с близлежащего участка СБ размерами 2x2 см, что сокращает длину тоководов и, соответственно, потери в них. В единичную ленту общего излучающего полотна радиотехнические элементы «впечатываются» в СБ обычными методами электронной оптики. Такая интегральная конструкция позволяет снизить удельную массу системы «СБ+ФАР» до 3 кг/квт излучаемой мощности, и изготавливать ее на лунном заводе в виде полносборного, готового к монтажу элемента антенного поля — рулонов, раскатываемых на простейшие опоры с помощью лунохода-установщика.
Общая масса излучающей системы — 16 тыс. т, из которых 7950 т кремния (различной степени обработки), 6 тыс. т железа, 1,2 тыс. т алюминия и 500 т титана добываются на месте, а 50 т электровакуумных приборов доставляется с Земли. Вырабатываемый попутно кислород применяется как топливо для транспортных кораблей.
Каждая лента изготовлена из гибкой стальной фольги толщиной 10 мкм (1), на которую нанесен электрогенерирующий слой аморфного кремния толщиной 1 мкм (2) и защитный слой силикатного стекла или плавленного сапфира такой же толщины, образующие собственно СБ. На ней с шагом 50 мм размещены радиотехнические элементы ФАР — полуволновые излучатели (3) и твердотельные полупроводниковые транзисторы мощностью по 0,2 Вт (4), работающие в режиме усилителей. От СБ на транзисторы ток подается по линиям 5, а задающая частота от генератора — по волноводу 6. Кроме того, имеются микроволновая или лазерная линия передачи данных системы управления лучом 7 и радиоотражающий экран-сетка 8. Из таких лент полуметровой ширины собирается вся сплошная поверхность энергоизлучательного комплекса.

Лунное сырье, общий объем переработки которого предполагается 50-100 тыс. т/год, имеет благоприятный химический состав (кислород — 42%, кремний — 21%, алюминий — 8%, железо — 12%). Завод для переработки грунта и получения материалов доставляется на поверхность Луны в виде модулей по 15-16 т. Лунные ракеты выводятся без топлива и полезной нагрузки; на околоземной орбите осуществляется их стыковка с полезной нагрузкой (кабиной персонала или модулем завода), после чего производится заправка обоими компонентами топлива.
В течении нескольких лет происходит наращивание лунной производственной базы и обитаемого комплекса. Срок развертывания ЛЭС — 10 лет. При 20-кратном использовании каждой достаточно всего двух лунных ракет. По грузопотоку на околоземную орбиту (600-650 т/год) количеству лунных ракет и темпу пусков масштаб транспортной системы вполне приемлем.
ЛЭС такой размерности, моделируя основные элементы полноразмерной ЛЭС, демонстрирует работоспособность и эффективность самого принципа дистанционного энергоснабжения, хотя (как уже сказано) и не будет конкурентоспособной — что всегда бывает с первыми образцами новой техники и технологии.
Реальность создания демонстрационной «мини-ЛЭС» опирается на достигнутый уровень ключевых технологий и элементной базы по солнечным батареям, СВЧ-передаче и двигателям транспортной космической системы. Уже созданы пленочные СБ на металлической подложке с аморфным кремнием при КПД до 8%; общемировое производство СБ превысило 50 тыс. кВт в год; получены образцы твердотельных СВЧ-приборов для ФАР мощностью несколько Вт и КПД до 60 %, а также ректенн с КПД преобразования до 90%. Есть большой теоретический задел по ФАР и способам управления лучом; на РЛС систем ПРО (см. «ТМ» №5 за этот год. — Ред.) работают ФАР с размерами в десятки метров при мощности в десятки тысяч кВт; получены обнадеживающие экспериментальные результаты по кислород-метановым ЖРД; грузопоток на околоземную орбиту, потребный для развертывания «мини-ЛЭС», даже ниже уровня, уже достигнутого ведущими космическими державами.
Наиболее сложным и наименее проработанным элементом является крупнотоннажное, полностью автоматизированное производство излучающих лент для энергоизлучательного комплекса. Некоторые элементы этих технологий в лабораторных масштабах целесообразно отработать на пионерной лунной базе. Но, как бы то ни было, создание «мини-ЛЭС» — вполне реальная и решаемая техническая задача.
Энергией Луны пронизано все живое на Земле. Она участвует в биологических процессах всех организмов.
По мнению многих ученых, жизнь на Земле зародилась в океане, но на сушу она вышла благодаря приливам, вызванным нашим естественным спутником. И сегодня Луна, похоже, может оказать землянам еще одну неоценимую услугу - спасти нас всех от неумолимо надвигающегося энергетического кризиса.
Ловушки в космосе
В середине прошлого века идея получения электрической энергии на Луне, а затем транспортировки ее на Землю волновала только писателей-фантастов. В своей книге "Черты будущего", изданной в начале 60-х годов в Нью-Йорке, известный футуролог и писатель Артур Кларк подробно рассмотрел перспективы утилизации в космосе лучистой энергии Солнца.
Учитывая малую плотность потока энергии у Земли, А. Кларк отметил целесообразность размещения "ловушек" солнечных лучей в непосредственной близости от нашей звезды с последующей передачей энергии по направленному лучу на Землю.
Прошло пятьдесят лет, и сегодня уже появляются серьезные, экономически и технически обоснованные проекты, как использовать Луну для решения наших энергетических проблем. По мнению американских и российских ученых, это может произойти уже в недалеком будущем.
Батареи за пределами Земли
Наиболее реальным считается получение электроэнергии с помощью солнечных батарей и термоядерных реакторов, работающих на изотопе гелий-3. Лучше всего разместить эти батареи на Луне.
Основной причиной, заставляющей создавать мощные солнечные батареи вне Земли, является, как это ни парадоксально, их опасность для окружающей среды. Производство электроэнергии с помощью солнечных батарей экологически безопасно, но вот само их создание загрязняет окружающую среду различными вредными веществами.
Поэтому профессор Дэвид Крисвелл из Института космических систем (Хьюстон, США) на заседании американского Геофизического союза, где обсуждались альтернативные экологические источники энергии, рассказал о своих идеях по созданию электростанций на Луне.
Его лунные установки будут аккумулировать солнечную энергию и передавать ее на Землю в виде микроволновых лучей. Изобретатель утверждает, что этот способ экологичен, источник энергии почти неисчерпаем, а добыча ее в конечном счете не требует механических усилий и денежных затрат.
Идеальный вариант
А для начала, по мнению Крисвелла, нужно решить проблему строительства лунных электростанций, которые будут сооружаться из подручных материалов.
Породы ночного светила богаты кремнием, кислородом, кальцием, алюминием, титаном, магнием и другими элементами периодической системы Менделеева, необходимыми для производства основных элементов электростанций, - кремниевых фотоэлектрических преобразователей, ферменных конструкций, кабелей, СВЧ-устройств и так далее.
Строительство энергетических объектов можно будет поручить роботам, которые уже сегодня способны осуществлять такие работы.
Единственная проблема, которая, по словам ученого, может помешать осуществлению проекта, - это отказ правительства США в финансировании, хотя требуется всего 60 миллиардов долларов, что только в три раза превышает бюджет космической программы "Аполлон".
Угроза бомбардировки
На Луне нет атмосферы и, следовательно, помех для проникновения к ее поверхности солнечного света - облаков и атмосферной пыли. На поверхность нашего естественного спутника поступает более широкий диапазон излучений, чем на Землю. Да и гораздо выгоднее использовать уже имеющуюся площадку - Луну, нежели организовывать новую - искусственные спутники.
Серьезная угроза для безопасной работы станции на Луне - это микрометеориты, которые могут повредить поглощающие элементы. По мнению специалистов НАСА, на этот случай пять таких энергостанций надо монтировать на экваторе спутника. Тогда в любой момент времени две или три из" них будут находиться на дневной стороне космического тела и работать на полную мощность, а остальные - на ночной, менее подверженной метеоритной бомбардировке. По расчетам Крисвелла, проект должен окупиться в течение пяти лет.
Деревня в глубоком каньоне
Над тем, как передать на нашу планету энергию, полученную из космоса, ученые размышляют ужа давно. В земных условиях проводились испытания работы макета одного из проектных устройств. Беспроводная передача энергии из космоса на Землю понималась как передача энергетического луча с геостационарных спутников на поверхность нашей планеты.
На французском острове Реюньон в Индийском океане сейчас полным ходом идет строительство установки для беспроволочной передачи электроэнергии на Землю из космоса. То, что недавно казалось фантастикой, становится реальностью.
Опробуют новый метод в одной из деревень острова, которая находится на дне глубокого каньона. Провести туда обычную линию электропередачи невозможно.
Облегчит жизнь островитянам технология, которая применяется в обычных микроволновых печах. Действует она следующим образом: ток из сети сначала преобразуется в микроволны с помощью такого же, как в обычных печах, устройства, только работающего на иных частотах. Затем направленные волны передаются на приемные антенны. Те улавливают пучки микроволн и снова превращают их в постоянный ток.
Как известно, привычное для нас электроснабжение по проводам достаточно эффективно лишь близ расположенной электростанции. Финансовые затраты на его передачу быстро возрастают по мере увеличения расстояния до потребителя. Одновременно растут и потери энергии. Поэтому специалисты считают, что микроволновая технология может оказаться востребованной при передаче энергии с Луны на Землю.
Автор: Ф. Грищук
Источник: "Интересная газета. Оракул" № 1  2010 г.
Термоядерное топливо с Луны предлагают американские ученые Дж.Кульчински и Х.Шмитт. Запасы ископаемого топлива, добыча которого экономически оправдана, примерно в середине XXI века окажутся исчерпанными. 
   Есть, правда, предположение, что нефть и газ - ресурсы возобновляемые, но в основе все же остается трансформация органического вещества с образованием геополимеров, а затем происходит их разрушение - синтез нефтяных углеводородов. Если гипотеза верна, то возможным окажется планировать разработку месторождений, исходя из темпов генерации и имеющихся запасов. Тогда, как утверждают апологеты, месторождения будут давать устойчивую добычу сотнями лет. 
   Все больше будет возрастать ценность ископаемого топлива как сырья для других продуктов, необходимых для поддержания жизни. В любом случае на протяжении большей части XXI века обитатели Земли, чтобы выжить, должны будут полагаться на ядерную энергетику и возобновляемые виды энергии: солнечную, ветровую, геотермальную, гидроэнергию и энергию биомассы. 
   Производство ядерной энергии в реакторах деления уже широко распространено. В мире сегодня работают 428 реакторов, расположенных в 26 странах, которые обеспечивают около 16% всей получаемой в мире электроэнергии. По прогнозам, к 2000г. доля ядерной энергии возрастет до 20%. Но с этим источником энергии связаны серьезные проблемы - от захоронения радиоактивных отходов до обеспечения безопасности реакторов. 
   Энергия атомных ядер высвобождается не только при делении тяжелых, но и при слиянии легких элементов. Этот способ получения энергии может обеспечить решение долговременных энергетических задач более безопасными и экологически приемлемыми путями. Ученые ведут работы в области управляемого термоядерного синтеза с 1951 г. Расчеты, правда, основанные на довольно оптимистической экстраполяции уже достигнутых результатов, показывают, что при этом в реакторе действительно возможна самоподдерживающаяся термоядерная реакция с выделением высокой термоядерной мощности. Не исключено, что мы войдем в XXI век, осуществив управляемый термоядерный синтез. 
   Почему же мы раньше не занимались им? Увы, на Земле практически отсутствует гелий-3. Количество природного гелия-3, оставшегося в недрах Земли, не превышает сотен килограммов, а при распаде наработанного в промышленных реакторах трития создается всего 10-20 кг гелия-3 за год. Энергия, выделяющаяся при сжигании одного килограмма гелия-3, составляет 19 МВт, и для обеспечения заметной части мировых энергетических нужд требуются не сотни килограммов, а сотни тонн гелия-3 в год. 
   Из анализа образцов лунного грунта, доставленных аппаратами "Аполлон" и "Луна", следует, что в поверхностном слое нашего спутника содержится более миллиона тонн гелия-3. Но как доставить его с Луны и выгодно ли, с экономической точки зрения, использовать его в термоядерных реакторах? 
   Главный источник гелия-3 на Луне - солнечный ветер. Подсчитано, что на поверхность Луны за 4 млрд. лет выпало 500 млн. т вещества. 
   Море Спокойствия могло бы стать основным местом размещения первых лунных горнодобывающих предприятий. Здесь содержится предположительно около 8 тыс. т гелия-3 на глубине до 2 м. 
   Поскольку элементы, входящие в состав солнечного ветра, слабо связаны в лунном грунте, извлечь их оттуда несложно. В частности, гелий-3 начинает выделяться уже при нагреве выше 200°С, а при 600° его извлекается 75%. 
   При получении одной тонны гелия-3 попутно будут образовываться 3300 т гелия-4, 500 т азота, 3000 т окиси углерода и углекислого газа и 6100 т водорода. Водород потребуется экспедиции для получения воды и в качестве транспортного топлива. Азот и углерод можно будет использовать для создания искусственной атмосферы и выращивания растений, а гелий-4 - как рабочее тело на энергетических установках. 
   На Луне запасено потенциальной тепловой энергии в десять с лишним раз больше, чем в ископаемых топливах, добыча которых на Земле сегодня экономически оправдана. Это единственный элемент, содержащийся на Луне в относительно больших количествах и в то же время отсутствующий на Земле. 
   Мы получим чистый и принципиально безопасный источник энергии, который обеспечит сохранение на Земле жизни и условий для развития общества, которое положит начало подлинно практическому использованию космического пространства. Уже это экономически оправдывает не только новые экспедиции на Луну, но и первые поселения на ней. 
   На 42-м конгрессе Международной федерации астронавтов, состоявшемся в Монреале (Канада) 5-11 октября 1991 г., американские специалисты предложили три сценария крупномасштабного вовлечения энергии Солнца в энергобаланс Земли. 
1) На Луне организуется добыча гелия и его транспортировка на Землю для использования вместе с дейтерием в качестве топлива для термоядерных реакторов, производящих электроэнергию. Добыча и переработка содержащих гелий лунных пород, сжижение гелия для доставки на Землю ведутся с использованием солнечной энергии. 
2) На околоземных орбитах создаются специальные энергоспутники, принимающие солнечную энергию, преобразующие ее в электрическую и передающие ее на Землю с помощью пучка волн сверхвысокой частоты или лазера. Примерно 90% необходимых для создания энергоспутников исходных материалов добывается и перерабатывается на Луне. 
3) На Луне создаются базовые приемники солнечной энергии, преобразующие ее в электрическую и передающие на Землю пучком волн сверхвысокой частоты. Для уверенного приема этой энергии, независимо от времени и положения планет, на окололунных и околоземных орбитах создаются спутники-отражатели. 
   Предполагается, что по каждому из трех сценариев через 20-30 лет возможно получение электроэнергии мощностью 10 млн. кВт, что с избытком покрывает сегодняшнюю потребность в электроэнергии такого города, как Москва. 
   Важное достоинство всех трех рассмотренных сценариев использования внеземных материалов - грузопотоки между космосом и Землей направлены в сторону Земли. 
   Кроме того, есть еще два довода в пользу изучения предложенных перспективных проектов энергоснабжения из космоса: 
- возможность получения экологически чистой энергии, так как население все более решительно противодействует попыткам сооружения на Земле любых энергетических установок, которые, как признано, даже при самых совершенных технологиях наносят ощутимый ущерб окружающей среде; 
- использование мощного задела технической базы ракетной промышленности в мирных целях.

Комментариев нет:

Отправить комментарий