четверг, 17 февраля 2022 г.

Водородный двигатель

 

Водородный двигатель 4JM

В поиске новых, более дешёвых источников энергии передвижения человеческая мысль пришла к идее использования водорода в качестве топлива для заправки колёсных средств передвижения. Несмотря на то, что идея не нова (первый водородный двигатель внутреннего сгорания создан в 1806 году французом Франсуа Де Ривасом), к промышленному использованию самого лёгкого газа в топливных элементах, двс и газотурбинных двигателях инженеры пришли только вначале нового, XXI века.

От поиска новых видов топлива зависит вектор развития автомобильной отрасли
От поиска новых видов топлива зависит вектор развития автомобильной отрасли

Как работает водородный двигатель

Главной причиной поиска нового источника энергии для автомобильных двигателей стала острая необходимость сокращения вредных выбросов. Современные технологии очистки отработанного топлива позволяют сократить объёмы выбросов до сотен граммов на километр пути. Но ситуация усугубляется неконтролируемым ростом числа автомашин на дорогах: разбухающий автомобильный поток нивелирует качество современных технологий удаления кислородно-углеродной смеси.

Принципиальная схема водородного автомобиля Toyota Mirai
Принципиальная схема водородного автомобиля Toyota Mirai

Наиболее перспективным направлением развития водородной технологии является применение топливных элементов. Они способны производить электроэнергию, располагаясь непосредственно на борту транспортного средства. В числе прочих разработкой гибридного водородного двигателя занимаются инженеры японской автомобильной корпорации Toyota Motor Corporation. В 2014 году под этой появился первый в мире серийный автомобиль на водороде – Mirai (в переводе с японского – «будущее»).

Машина «нафарширована» техническими новинками
Машина «нафарширована» техническими новинками

Силовая установка Toyota Mirai – гибридная, включает три составные части:

  • батарея топливных элементов TFCS;
  • водородные баллоны высокого давления;
  • повышающий преобразователь.

Батарея способна производить 114 кВт мощности, что по DIN эквивалентно 155 л.с. Удельная мощность батареи TFCS (3,1 кВт/л) более, чем в 2 раза выше первого варианта, разработанного инженерами Toyota – FCHV-advantage.

4JM – лучший в мире водородный мотор

Следует отметить, что химическая реакция по выработке электрической энергии происходит без горения, повышая, тем самым экологичность и без того абсолютно «чистого» электромотора. Преобразование энергии в двигателе 4JM осуществляется с КПД 83 %. На двигатель установлена вторичная никель-кадмиевая батарея в виде аккумулятора мощностью 21 кВт.

Силовая установка 4JM на платформе Mirai
Силовая установка 4JM на платформе Mirai

4JM представляет собой синхронный электродвигатель переменного тока. При рекуперативном торможении аккумулятор сохраняет возвращаемую в сеть электроэнергию, которая вырабатывается тяговым двигателем в режиме генератора.

С помощью преобразователя полученное на элементах напряжение повышается до показателя 650 В. Это нужно для того, чтобы уменьшить геометрические параметры электромотора и число топливных элементов, компактно уместить составные части системы внутри автомобиля. Постоянный ток в переменный преобразуется с помощью инвертора. В процессе заправки закачка водорода в бак производится через фильтрационную угольную систему. При движении через воздухозаборники в батарею попадает воздух из атмосферы.

Начинается химическая реакция с водородом, результатом которой является получение электрической энергии. При нажатии на акселератор осуществляется её подача от батареи к мотору. Знатоки химии сразу определят, что единственным побочным продуктом в данной цепочке является образующаяся в результате химической реакции вода. Её отвод осуществляется через выхлопную трубу.

Внешне автомобиль ничем не отличается от бензиновых и дизельных собратьев
Внешне автомобиль ничем не отличается от бензиновых и дизельных собратьев

Расположение батареи и водородных баллонов высокого давления по центру машины вкупе с оптимальными настройками электромотора обеспечивают оптимальное управление показателями мощности. Результатом этого является восприимчивость машины к действиям водителя на любой скорости, повышение крутящего момента и обеспечение плавного разгона. В обратном порядке происходит процедура торможения.

Геометрия машины спроектирована таким образом, чтобы обеспечить максимально низкий центр тяжести, оптимальную развесовку передней и задней частей кузова и общую максимальную жёсткость конструкции.

Ёмкость для хранения водорода
Ёмкость для хранения водорода

Количество водородных ёмкостей – 2 (60 и 62,4 л, соответственно). Газ хранится в них под давлением 70 МПа. Максимальная масса водорода, закачиваемого в ёмкости в течение 3 минут, составляет 5 кг. Это позволяет на одной заправке проехать до 650 километров, развивая максимальную скорость 175 км/ч.


Всё ли так безоблачно в водородной технологии

Срок службы одной топливной ячейки, работающей на водороде, составляет до 10 лет. В работе двигателя отсутствуют характерные для двс шумы и вибрация. Моторы абсолютно чисты с экологической точки зрения. Тем не менее, критика исследований в области транспорта на водородном топливе обширна. Апологеты традиционных источников энергии для колёсных автомашин и разработчики обычных электродвигателей «задвигают» водород, указывая на ряд трудноразрешимых вопросов в области инфраструктуры и технологии.

Критики водородного транспорта указывают на отсутствие стандартов в области производства, хранения, перемещения и использования водорода. Значительный объём топливных баков для дальних поездок сокращает вместимость салона и багажника. Есть чисто технологические факторы, связанные с опасностью неправильного обращения с оборудованием для хранения и закачки водорода. Он чрезвычайно летуч: малейший зазор в конструкции баков и систем подачи водорода к месту химической реакции может привести замкнутому наполнению салона автомашины и воспламенению.

Словом, проблем, которые предстоит решить на пути к безопасному и экономичному массовому применению водорода для заправки автомобильного транспорта, достаточно. Главный вопрос в том, готовы ли владельцы автокорпораций вкладывать значительные средства в развитие новой инфраструктуры, дальнейшие теоретические исследования и практические разработки. Ведь на сегодня дозаправка автомашин в пути (то есть, без посещения специальных заправочных станций) невозможна.

Деньги – основа всего

Главным «минусом» считается сложность процесса производства столь огромного количества водорода, которое понадобится при массовом переводе машин на новое топливо. Дорого на сегодняшний день получать водород, как из природного газа, так и методом электролиза. Таким образом, стоимость пробега на машине с водородным двигателем значительно дороже, нежели на бензине или солярке.

Экономическая целесообразность применения водорода
Экономическая целесообразность применения водорода

На данный момент, заправляя 120 литров водорода в пару баков высокого давления, владельцы авто должны выложить 960 евро. Это очень дорого, в сравнении с бензином или дизельным топливом. Позволить себе приобрести такой автомобиль и постоянно передвигаться на нём, наматывая немалые «концы», может позволить не каждый средний житель развитых стран Европы, Азии или Америки. Пока Toyota Mirai представляет собой дорогой экземпляр для автомобильной коллекции, либо средство передвижения для толстосумов, не привыкших считать деньги.

Водородная заправка – потенциально опасное место для окружающих
Водородная заправка – потенциально опасное место для окружающих

Частичным решением вопроса мог бы стать гибридный двигатель, в котором вторым топливом является традиционный бензин или солярка. Для проведения такого тюнинга вручную, нужно осуществить установку пусковой батареи, БСУ, водородных и кислородных баллонов. Электротехническая часть тюнинга:

  • электрохимический генератор (ЭХГ);
  • электродвигатель;
  • пусковая батарея.
Водородный автомобиль

Сырьём для получения водорода является питьевая вода, слитая в ёмкость для электролиза. Источником энергии является генератор. Газ вырабатывается в небольшом количестве, затем направляется во впускной коллектор двс. Там происходит смешивание водорода с бензином и последующее сгорание. Однако, расход энергии на получение водорода в пути, и его количество не позволяют говорить об экономичности подобных установок.

Невзирая на то, что машины с гибридными установками на водородном топливе и электромоторах ближе всего по конструкции, философии использования и технологии к обычным электромобилям, апологеты последних являются главными критиками нового источника энергии. Видимо, в будущем затраты на решение всех вопросов будут ничтожными по сравнению с доходами от продаж автомашин на водороде. Если, конечно, удастся преодолеть все препятствия.

воскресенье, 13 февраля 2022 г.

Соперник солярки Диметиловый эфир

 

Соперник солярки
Диметиловый эфир (ДМЭ)

В. Нечаев

Сегодня, пожалуй, только ленивый не говорит о проблемах экологии. Актуальность данной темы определяется не только заботой о здоровье человечества, которое стало жертвой собственных технических деяний, но и экономическими потерями, которые дорого обходятся как налогоплательщикам, так и природе.

Тревоги и заботы экологов

Основной причиной ухудшающейся с каждым годом экологической ситуации в нашей стране, особенно в городах, – непрерывный рост численности автомобильного парка. В России насчитывается свыше 30 млн. автомобилей, из которых на долю грузовиков и автобусов приходится около 5,5…6 млн. единиц. Их функционирование вызывает загрязнение воздуха до 95%, почти половину издаваемого шума и вредное воздействие на климат – около 70%. Ежегодно на россиян обрушивается свыше 12,5 млн. т токсичных веществ, изрыгаемых выхлопными трубами автомобилей. Экологи не зря бьют тревогу. В выбросах загрязняющих веществ в атмосферу всеми техногенными источниками доля автотранспорта достигает в среднем 43%, парниковых газов – порядка 10%, в массе промышленных отходов – 2%, в сбросах вредных веществ со сточными водами – около 3%, в потреблении озоноразрушающих веществ – около 5%. Наконец, доля автотранспорта в шумовом воздействии на население городов составляет 85…95%. В некоторых российских мегаполисах загрязнение воздушного бассейна достигло критического уровня и является основной причиной высокой заболеваемости, низкой продолжительности жизни и деградации окружающей природы. Не случайно проблема загрязнения атмосферы приобрела серьезную социальную и политическую окраску. Прямой ежегодный ущерб от работы автотранспортного комплекса России составляет свыше $4 млрд. или около 2% валового национального продукта государства. Факты неутешительные.

Варианты установки топливных баков на раме автомобиля
Варианты установки топливных баков на раме автомобиля

Игра стоит свеч

Сложившаяся ситуация диктует принять адекватные меры. Одной из наиболее действенных является использование альтернативных экологически более чистых видов моторного топлива. Они рассматриваются как один из основных путей снижения негативного влияния автомобиля на окружающую среду. Из перспективных альтернативных топлив для двигателей внутреннего сгорания заслуживает внимания диметиловый эфир. В настоящее время это единственное синтетическое топливо, обеспечивающее полную замену традиционному дизельному топливу. Интерес к диметиловому эфиру (ДМЭ) объясняется и тем, что в последние годы отечественной химической промышленностью разработаны новые технологии его получения из метана.

Проведенные исследования доказывают, что применение диметилового эфира в качестве моторного топлива для дизелей является основанием для оптимистичных прогнозов. У ДМЭ есть преимущества перед дизельным и альтернативными топливами. К его достоинствам относятся пониженная склонность к сажеобразованию при горении; практически полное отсутствие дымности отработавших газов; хорошая самовоспламеняемость в дизеле (цетановое число ЦЧ = 55…60 по сравнению с ЦЧ = 45…50 – для дизельного топлива).

Варианты установки топливных баков на раме автомобиля
Варианты установки топливных баков на раме автомобиля

Результаты моторных испытаний дизелей, работающих на диметиловом эфире, показали значительное уменьшение уровня вредных выбросов отработавших газов. Так, в 3…4 раза отмечено снижение окислов азота при бездымной работе двигателя на всех режимах. При работе на ДМЭ выявлено сохранение, а на некоторых режимах и улучшение до 5% экономичности дизеля, повышение его эффективного КПД по сравнению с работой на дизельном топливе.

Чтобы адаптировать обычные дизели для работы на диметиловом эфире, необходимо модернизировать существующую топливоподающую аппаратуру, направленную на увеличение объемной подачи топлива; принять меры, исключающие появление газообразной фазы в топливных магистралях и насосах; ввести элементы безопасности, заменить топливные баки на баллоны низкого давления, по конструкции аналогичные баллонам на автомобилях, работающих на сжиженном нефтяном газе.

К недостаткам ДМЭ можно отнести пониженную теплоту сгорания единицы объема топлива и меньшую вязкость по сравнению с дизельным топливом. Последнее обстоятельство требует доводки топливоподающей аппаратуры для обеспечения ее противозадирных качеств и повышения долговечности.

Так выглядит баллон для диметилового эфира
Так выглядит баллон для диметилового эфира

От слов к делу

Чтобы перейти от слов к делу, усилия объединили специалисты АМО ЗИЛ, ФГУП НАМИ и МГТУ им. Н.Э. Баумана. Рамки совместного проекта предусматривали переоборудование малотоннажных грузовиков ЗИЛ-5301 «Бычок» для работы на диметиловом эфире.

Отправной точкой в работе стал выбор принципиальной схемы системы питания 109-сильного дизеля Минского моторного завода Д-245.9C, приспособленного для функционирования на диметиловом эфире. Последний хранится в баллоне, который оснащен наполнительной и контрольно-предохранительной арматурой, по конструкции аналогичной применяемой в автомобильных баллонах для сжиженного нефтяного газа, и погружным электрическим насосом. Из баллона ДМЭ под давлением насыщенных паров в жидкой фазе поступает на вход топливоподкачивающего насоса с электроприводом. По манометру, находящемуся перед топливным насосом высокого давления (ТНВД), контролируется давление жидкого ДМЭ, которое должно быть выше давления насыщенных паров на некоторую величину, зависящую не только от подачи топлива в цилиндры дизеля, но и от расхода топлива, прокачиваемого через полости низкого давления ТНВД. Расход прокачиваемого топлива регулируется перепускным клапаном. Одна часть топлива с помощью топливопровода и форсунки подается в цилиндр дизеля, а другая (прежде чем попасть в баллон) – проходит через полости низкого давления ТНВД, перепускной и электромагнитный клапаны и фильтр.

Топливный насос высокого давления дизеля ММЗ Д-245.12 для работы на диметилэфире
Топливный насос высокого давления дизеля ММЗ Д-245.12 для работы на диметилэфире

В систему питания ДМЭ входят газовый баллон со вспомогательным оборудованием, включающим заправочный блок с вентильным (вентильными) устройством (устройствами); указатель уровня; механизм автоматического ограничения наполнения баллона до 80% его емкости; предохранительный (пожарный) клапан; рабочий, обратный и скоростной клапаны; система вентиляции, выполненная в виде газонепроницаемого кожуха. К этому надо прибавить заправочное устройство со встроенным клапаном; магистральный запорный клапан; газопроводы и шланги; подкачивающие насосы среднего давления; топливный насос высокого давления; топливные форсунки.

При разработке системы питания, работающей на диметилэфире, учитывался целый ряд обстоятельств. Во-первых, ДМЭ необходимо впрыскивать в цилиндры дизеля в жидком виде, для чего требуется поддерживать в системе избыточное давление, превышающее давление насыщенных паров в самой нагретой зоне подкапотного пространства на величину не менее 0,5 МПа. Во-вторых, объемная величина цикловой подачи диметилэфира должна быть увеличена не менее чем в 1,6 раза из-за меньших энергосодержания и плотности по сравнению с дизельным топливом. В-третьих, из-за низкой вязкости ДМЭ (0,25 сСт) по сравнению с соляркой (2,5 сСт) и плохих смазочных свойств необходимо введение в топливо специальных противозадирных присадок. В-четвертых, поскольку ДМЭ обладает высокой коррозионной агрессивностью к некоторым материалам и покрытиям, необходимо заменить их другими, более стойкими.

Во время зимних испытаний
Во время зимних испытаний

Проверка на дорогах

Для проведения эксплуатационных испытаний был изготовлен десяток «Бычков» с диметилэфирными силовыми установками. Малотоннажникам предстояло сдать экзамен на эксплуатационную надежность элементов и всей системы питания в целом. Специалисты хотели оценить техническое состояние системы питания и двигателей автомобилей, соответствие их отработавших газов современным экологическим показателям, замерить топливную экономичность автомобилей.

Поверки на дорогах предоставили разработчикам богатый исследовательский материал. В ходе испытаний был отмечен ряд дефектов: нестабильная работа двигателя при изменении его температурного режима; нарушение герметичности газовых трубопроводов; заклинивание подкачивающего насоса; жесткий пуск дизеля; его нестабильная работа при резком изменении нагрузки; выход из строя ряда резинотехнических изделий и датчика давления.

Все отказы и дефекты тщательно анализировались, проводились дополнительные испытания и доводочные работы на безмоторных и моторных стендах. По результатам выполненных работ корректировалась конструкторская документация и изготовлялись измененные элементы и детали системы питания.

Изотермический автофургон, оборудованный турбохолодильной установкой
Изотермический автофургон, оборудованный турбохолодильной установкой

Серьезная проблема, выявленная в ходе эксплуатационных испытаний, была связана с возникновением так называемых «провалов» в работе двигателя после его прогрева, наиболее часто проявляющихся при повышенных температурах окружающей среды. Специалисты установили, что «провалы» вызваны появлением паровых пробок в нагнетательных топливопроводах между насосом и форсунками, когда остаточное давление в топливопроводе понижается ниже давления насыщенных паров диметилэфира.

Чтобы обеспечить надежную работу топливного насоса высокого давления на диметиловом эфире в его конструкцию пришлось внести некоторые изменения. Для устранения заклинивания плунжерных пар изза ухудшения смазывающих свойств ДМЭ подобрали комплект плунжерных пар с уменьшенной гидроплотностью. Для отвода просачивающегося из надплунжерной полости диметилэфира в картер насоса на боковой поверхности плунжеров выполнили кольцевую канавку, соединенную с дополнительно просверленным каналом во втулке плунжера. Чтобы повысить объемную подачу ДМЭ увеличили ход рейки топливного насоса в рабочем диапазоне нагрузочных режимов. Установленное для этих работ давление начала впрыска, равное 18 МПа, уменьшили до 12 МПа. Помимо этого вдвое снизили величину разгрузочного объема нагнетательных клапанов в ТНВД за счет изменения конструктивных параметров клапана (уменьшена высота разгрузочного пояска).

Эффективность внедренных мероприятий нашла свое подтверждение экспериментально при проведении дорожных испытаний упомянутой партии грузовиков. Достижением проекта стало то обстоятельство, что использование диметилового эфира в качестве моторного топлива позволяет без дорогостоящих электронноуправляемых систем впрыска достаточно легко выполнить требования экологических норм Euro 3. Экономические показатели оказались несколько лучше, чем у грузовиков, оснащенных дизельными двигателями.

«Бычок» с доработанным по результатам испытаний дизелем
«Бычок» с доработанным по результатам испытаний дизелем